y^2+x*y=x^3+a2*x^2+a6
Lopez-Dahab coordinates [database entry] represent x y as X Y Z satisfying the following equations:
x=X/Z
y=Y/Z^2
| Operation | Assumptions | Cost | Readdition cost |
|---|---|---|---|
| addition | Z1=1 and Z2=1 | 5M + 3S + 1*a2 | 5M + 3S + 1*a2 |
| addition | Z2=1 | 8M + 5S + 1*a2 | 8M + 5S + 1*a2 |
| addition | 13M + 4S | 13M + 3S | |
| doubling | Z1=1 | 1M + 3S + 1*a2 + 1*a6 | |
| doubling | 3M + 5S + 1*a2 + 1*a6 | ||
| doubling | 4M + 4S + 1*a2 |
A = Y1+Y2
B = X1+X2
Z3 = B^2
D = X2*Z3
X3 = A^2+B*(A+Z3+a2*B)
Y3 = (D+X3)*(A*B+Z3)+(Y2+X2)*Z3^2
A = Y1+Y2*Z1^2
B = X1+X2*Z1
C = B*Z1
Z3 = C^2
D = X2*Z3
X3 = A^2+C*(A+B^2+a2*C)
Y3 = (D+X3)*(A*C+Z3)+(Y2+X2)*Z3^2
A = X1*Z2
B = X2*Z1
C = A^2
D = B^2
E = A+B
F = C+D
G = Y1*Z2^2
H = Y2*Z1^2
I = G+H
J = I*E
Z3 = F*Z1*Z2
X3 = A*(H+D)+B*(C+G)
Y3 = (A*J+F*G)*F+(J+Z3)*X3
C = X1^2
Z3 = C
X3 = C^2+a6
Y3 = (Y1^2+a2*Z3+a6)*X3+a6*Z3
A = Z1^2
B = a6*A^2
C = X1^2
Z3 = A*C
X3 = C^2+B
Y3 = (Y1^2+a2*Z3+B)*X3+Z3*B
A = X1*Z1
B = X1^2
C = B+Y1
D = A*C
Z3 = A^2
X3 = C^2+D+a2*Z3
Y3 = (Z3+D)*X3+B^2*Z3