y^2+x*y=x^3+a2*x^2+a6
Lambda coordinates [database entry] represent x y as X L Z satisfying the following equations:
x=X/Z y/x=(L-X)/Z
Source: 2013 Oliveira–López–Aranha–Rodríguez-Henríquez "Lambda coordinates for binary elliptic curves".
| Operation | Assumptions | Cost | Readdition cost |
|---|---|---|---|
| addition | 11M + 2S | 11M + 2S | |
| doubling | a21=a2+1 and a226=a2^2+a6 | 3M + 4S + 1*a2 + 1*a226 + 1*a21 | |
| doubling | 4M + 4S + 1*a2 |
A = L1*Z2
B = L2*Z1
C = A+B
D = X1*Z2
E = X2*Z1
F = D+E
G = F^2
H = C*D
I = C*E
J = C*G
K = J*Z2
X3 = H*I
L3 = (I+G)^2+K*(L1+Z1)
Z3 = K*Z1
A = Z1^2
B = L1+Z1
C = L1*B
D = a2*A
E = C+D
F = L1+X1
G = F^2
H = A^2
X3 = E^2
Z3 = E*A
L3 = G*(G+E+A)+a226*H+X3+a21*Z3
A = Z1^2
B = L1^2
C = L1*Z1
D = a2*A
E = B+C+D
F = X1*Z1
X3 = E^2
Z3 = E*A
L3 = F^2+X3+E*C+Z3