y^2+x*y=x^3+a2*x^2+a6
Extended Lopez-Dahab coordinates with a2=1 [database entry] make the additional assumptions
a2=1and represent x y as X Y Z ZZ satisfying the following equations:
x=X/Z y=Y/Z^2 ZZ=Z^2
| Operation | Assumptions | Cost | Readdition cost |
|---|---|---|---|
| addition | Z2=1 | 8M + 4S | 8M + 4S |
| addition | Z2=1 | 8M + 4S + 1*a2 | 8M + 4S + 1*a2 |
| addition | 13M + 3S | 13M + 3S | |
| doubling | sqrta6^2=a6 | 2M + 4S + 1*a6 + 1*sqrta6 | |
| doubling | 2M + 5S + 2*a6 |
A = X1+X2*Z1
B = Y1+Y2*ZZ1
C = A*Z1
D = C*(B+C)
Z3 = C^2
ZZ3 = Z3^2
X3 = B^2+C*A^2+D
Y3 = (X3+X2*Z3)*D+(X2+Y2)*ZZ3
A = Y1+Y2*ZZ1
B = X1+X2*Z1
C = B*Z1
Z3 = C^2
ZZ3 = Z3^2
D = X2*Z3
X3 = A^2+C*(A+B^2+a2*C)
Y3 = (D+X3)*(A*C+Z3)+(Y2+X2)*ZZ3
A = X1*Z2
B = X2*Z1
C = A^2
D = B^2
E = A+B
F = C+D
G = Y1*ZZ2
H = Y2*ZZ1
I = G+H
J = I*E
Z3 = F*Z1*Z2
ZZ3 = Z3^2
X3 = A*(H+D)+B*(C+G)
Y3 = (A*J+F*G)*F+(J+Z3)*X3
A = X1^2
B = Y1^2
Z3 = ZZ1*A
ZZ3 = Z3^2
X3 = (A+sqrta6*ZZ1)^2
Y3 = B*(B+X3+Z3)+a6*ZZ3+ZZ3
A = X1^2
B = Y1^2
Z3 = ZZ1*A
ZZ3 = Z3^2
X3 = A^2+a6*ZZ1^2
Y3 = B*(B+X3+Z3)+a6*ZZ3+ZZ3